Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2316205

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global health concern. Three years since its origin, despite the approval of vaccines and specific treatments against this new coronavirus, there are still high rates of infection, hospitalization, and mortality in some countries. COVID-19 is characterised by a high inflammatory state and coagulation disturbances that may be linked to purinergic signalling molecules such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), and purinergic receptors (P1 and P2). These nucleotides/nucleosides play important roles in cellular processes, such as immunomodulation, blood clot formation, and vasodilation, which are affected during SARS-CoV-2 infection. Therefore, drugs targeting this purinergic pathway, currently used for other pathologies, are being evaluated in preclinical and clinical trials for COVID-19. In this review, we focus on the potential of these drugs to control the release, degradation, and reuptake of these extracellular nucleotides and nucleosides to treat COVID-19. Drugs targeting the P1 receptors could have therapeutic efficacy due to their capacity to modulate the cytokine storm and the immune response. Those acting in P2X7, which is linked to NLRP3 inflammasome activation, are also valuable candidates as they can reduce the release of pro-inflammatory cytokines. However, according to the available preclinical and clinical data, the most promising medications to be used for COVID-19 treatment are those that modulate platelets behaviour and blood coagulation factors, mainly through the P2Y12 receptor.


Subject(s)
COVID-19 , Nucleosides , Humans , Nucleosides/metabolism , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Adenosine Triphosphate/metabolism , Adenosine Diphosphate/metabolism , Receptors, Purinergic/metabolism
2.
Front Immunol ; 13: 894470, 2022.
Article in English | MEDLINE | ID: covidwho-1933682

ABSTRACT

Inflammation is a tightly coordinated response against bacterial and viral infections, triggered by the production of pro-inflammatory cytokines. SARS-CoV-2 infection induces COVID-19 disease, characterized by an inflammatory response mediated through the activation of the NLRP3 inflammasome, which results in the production of IL-1ß and IL-18 along with pyroptotic cell death. The NLRP3 inflammasome could be also activated by sterile danger signals such as extracellular ATP triggering the purinergic P2X7 receptor. Severe inflammation in the lungs of SARS-CoV-2-infected individuals is associated with pneumonia, hypoxia and acute respiratory distress syndrome, these being the causes of death associated with COVID-19. Both the P2X7 receptor and NLRP3 have been considered as potential pharmacological targets for treating inflammation in COVID-19. However, there is no experimental evidence of the involvement of the P2X7 receptor during COVID-19 disease. In the present study, we determined the concentration of different cytokines and the P2X7 receptor in the plasma of COVID-19 patients and found that along with the increase in IL-6, IL-18 and the IL-1 receptor antagonist in the plasma of COVID-19 patients, there was also an increase in the purinergic P2X7 receptor. The increase in COVID-19 severity and C-reactive protein concentration positively correlated with increased concentration of the P2X7 receptor in the plasma, but not with the IL-18 cytokine. The P2X7 receptor was found in the supernatant of human peripheral blood mononuclear cells after inflammasome activation. Therefore, our data suggest that determining the levels of the P2X7 receptor in the plasma could be a novel biomarker of COVID-19 severity.


Subject(s)
COVID-19 , Inflammasomes , Cytokines/metabolism , Humans , Inflammasomes/metabolism , Inflammation , Interleukin-18/metabolism , Leukocytes, Mononuclear/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Purinergic P2X7 , SARS-CoV-2 , Severity of Illness Index
3.
Life Sci ; 297: 120482, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1734800

ABSTRACT

Identifying signaling pathways and molecules involved in SARS-CoV-2 pathogenesis is pivotal for developing new effective therapeutic or preventive strategies for COVID-19. Pannexins (PANX) are ATP-release channels in the plasma membrane essential in many physiological and immune responses. Activation of pannexin channels and downstream purinergic receptors play dual roles in viral infection, either by facilitating viral replication and infection or inducing host antiviral defense. The current review provides a hypothesis demonstrating the possible contribution of the PANX1 channel and purinergic receptors in SARS-CoV-2 pathogenesis and mechanism of action. Moreover, we discuss whether targeting these signaling pathways may provide promising preventative therapies and treatments for patients with progressive COVID-19 resulting from excessive pro-inflammatory cytokines and chemokines production. Several inhibitors of this pathway have been developed for the treatment of other viral infections and pathological consequences. Specific PANX1 inhibitors could be potentially included as part of the COVID-19 treatment regimen if, in future, studies demonstrate the role of PANX1 in COVID-19 pathogenesis. Of note, any ATP therapeutic modulation for COVID-19 should be carefully designed and monitored because of the complex role of extracellular ATP in cellular physiology.


Subject(s)
COVID-19 Drug Treatment , Adenosine Triphosphate/metabolism , Connexins/metabolism , Humans , Nerve Tissue Proteins/metabolism , Receptors, Purinergic/metabolism , SARS-CoV-2
4.
Immunopharmacol Immunotoxicol ; 43(6): 633-643, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1467231

ABSTRACT

The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Cytokine Release Syndrome/prevention & control , Cytokines/blood , Purinergic Antagonists/therapeutic use , Receptors, Purinergic/drug effects , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/adverse effects , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Host-Pathogen Interactions , Humans , Ligands , Molecular Targeted Therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/prevention & control , Multiple Organ Failure/virology , Purinergic Antagonists/adverse effects , Receptors, Purinergic/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL